關于舉辦 “大數據建模與分析挖掘應用”實戰培訓班的通知
一、課程簡介
大數據建模與分析挖掘技術已經逐步地應用到新興互聯網企業(如電子商務網站、搜索引擎、社交網站、互聯網廣告服務提供商等)、銀行金融證券企業、電信運營等行業,給這些行業帶來了一定的數據價值增值作用。
本次課程面向有一定的數據分析挖掘算法基礎的工程師,帶大家實踐大數據分析挖掘平臺的項目訓練,系統地講解數據準備、數據建模、挖掘模型建立、大數據分析與挖掘算法應用在業務模型中,結合主流的Hadoop與Spark大數據分析平臺架構,實現項目訓練。
結合業界使用最廣泛的主流大數據平臺技術,重點剖析基于大數據分析算法與BI技術應用,包括分類算法、聚類算法、預測分析算法、推薦分析模型等在業務中的實踐應用,并根據講師給定的數據集,實現兩個基本的日志數據分析挖掘系統,以及電商(或內容)推薦系統引擎。
本課程基本的實踐環境是Linux集群,JDK1.8, Hadoop 2.7.*,Spark 2.1.*。
學員需要準備的電腦最好是i5及以上CPU,4GB及以上內存,硬盤空間預留50GB(可用移動硬盤),基本的大數據分析平臺所依賴的軟件包和依賴庫等,講師已經提前部署在虛擬機鏡像(VMware鏡像),學員根據講師的操作任務進行實踐。
本課程采用技術原理與項目實戰相結合的方式進行教學,在講授原理的過程中,穿插實際的系統操作,本課程講師也精心準備的實際的應用案例供學員動手訓練。
二、培訓時間及地點
2022年04月14日-04月17日(14日報到) 杭州
2022年05月26日-05月29日(26日報到) 成都
2022年06月24日-06月27日(24日報到) 廣州
三、培訓目標
1.本課程讓學員充分掌握大數據平臺技術架構、大數據分析的基本理論、機器學習的常用算法、國內外主流的大數據分析與BI商業智能分析解決方案、以及大數據分析在搜索引擎、廣告服務推薦、電商數據分析、金融客戶分析方面的應用案例。
2.本課程強調主流的大數據分析挖掘算法技術的應用和分析平臺的實施,讓學員掌握主流的基于大數據Hadoop和Spark、R的大數據分析平臺架構和實際應用,并用結合實際的生產系統案例進行教學,掌握基于Hadoop大數據平臺的數據挖掘和數據倉庫分布式系統平臺應用,以及商業和開源的數據分析產品加上Hadoop平臺形成大數據分析平臺的應用剖析。
3.讓學員掌握常見的機器學習算法,深入講解業界成熟的大數據分析挖掘與BI平臺的實踐應用,并以客戶分析系統、日志分析和電商推薦系統為案例,串聯常用的數據挖掘技術進行應用教學。
四、培訓人群
1.大數據分析應用開發工程師
2.大數據分析項目的規劃咨詢管理人員
3.大數據分析項目的IT項目高管人員
4.大數據分析與挖掘處理算法應用工程師
5.大數據分析集群運維工程師
6.大數據分析項目的售前和售后技術支持服務人員
五、培訓特色
定制授課+ 實戰案例訓練+ 互動咨詢討論,共3天
(說明:講師會提供虛擬機鏡像,并把Hadoop,Spark等系統提前部署在虛擬機中,分析挖掘平臺構建在Hadoop與Spark之上,學員自帶筆記本,運行虛擬機,并利用同樣的鏡像啟動多臺虛擬機,構建實驗集群,鏡像會提前給學員)
六、詳細大綱與培訓內容
兩個完整的項目任務和實踐案例(重點) |
1.日志分析建模與日志挖掘項目實踐 a)Hadoop,Spark,并結合ELK技術構建日志分析系統和日志數據倉庫 b)互聯網微博日志分析系統項目 2.推薦系統項目實踐 a)電影數據分析與個性化推薦關聯分析項目 b)電商購物籃分析項目 Hadoop,Spark,可結合Oryx分布式集群在個性化推薦和精準營銷項目。 |
項目的階段性步驟貫穿到三天的培訓過程中,第三天完成整個項目的原型 |
培訓內容安排如下:
時間 |
內容提要 |
授課詳細內容 |
實踐訓練 |
第一天 |
業界主流的數據倉庫工具和大數據分析挖掘工具 |
1. 業界主流的基于Hadoop和Spark的大數據分析挖掘項目解決方案 2. 業界數據倉庫與數據分析挖掘平臺軟件工具 3. Hadoop數據倉庫工具Hive 4. Spark實時數據倉庫工具SparkSQL 5. Hadoop數據分析挖掘工具Mahout 6. Spark機器學習與數據分析挖掘工具MLlib 7. 大數據分析挖掘項目的實施步驟 |
配置數據倉庫工具Hadoop Hive和SparkSQL 部署數據分析挖掘工具Hadoop Mahout和Spark MLlib |
大數據分析挖掘項目的數據集成操作訓練 |
1. 日志數據解析和導入導出到數據倉庫的操作訓練 2. 從原始搜索數據集中抽取、集成數據,整理后形成規范的數據倉庫 3. 數據分析挖掘模塊從大型的集中式數據倉庫中訪問數據,一個數據倉庫面向一個主題,構建兩個數據倉庫 4. 同一個數據倉庫中的事實表數據,可以給多個不同類型的分析挖掘任務調用 5. 去除噪聲 |
項目數據集加載ETL到Hadoop Hive數據倉庫并建立多維模型 | |
基于Hadoop的大型數據倉庫管理平臺—HIVE數據倉庫集群的多維分析建模應用實踐 |
6. 基于Hadoop的大型分布式數據倉庫在行業中的數據倉庫應用案例 7. Hive數據倉庫集群的平臺體系結構、核心技術剖析 8. Hive Server的工作原理、機制與應用 9. Hive數據倉庫集群的安裝部署與配置優化 10. Hive應用開發技巧 11. Hive SQL剖析與應用實踐 12. Hive數據倉庫表與表分區、表操作、數據導入導出、客戶端操作技巧 13. Hive數據倉庫報表設計 14. 將原始的日志數據集,經過整理后,加載至Hadoop + Hive數據倉庫集群中,用于共享訪問 |
利用HIVE構建大型數據倉庫項目的操作訓練實踐 | |
Spark大數據分析挖掘平臺實踐操作訓練 |
15. Spark大數據分析挖掘平臺的部署配置 16. Spark數據分析庫MLlib的開發部署 17. Spark數據分析挖掘示例操作,從Hive表中讀取數據并在分布式內存中運行 |
||
第二天 |
聚類分析建模與挖掘算法的實現原理和技術應用 |
18. 聚類分析建模與算法原理及其在Spark MLlib中的實現與應用,包括: a) Canopy聚類(canopy clustering) b) K均值算法(K-means clustering) c) 模糊K均值(Fuzzy K-means clustering) d) EM聚類,即期望最大化聚類(Expectation Maximization) e) 以上算法在Spark MLib中的實現原理和實際場景中的應用案例。 19. Spark聚類分析算法程序示例 |
基于Spark MLlib的聚類分析算法,實現日志數據集中的用戶聚類 |
分類分析建模與挖掘算法的實現原理和技術應用 |
20. 分類分析建模與算法原理及其在Spark MLlib中的實現與應用, 包括: f) Spark決策樹算法實現 g) 邏輯回歸算法(logistics regression) h) 貝葉斯算法(Bayesian與Cbeyes) i) 支持向量機(Support vector machine) j) 以上算法在Spark MLlib中的實現原理和實際場景中的應用案例。 21. Spark客戶資料分析與給用戶貼標簽的程序示例 22. Spark實現給商品貼標簽的程序示例 23. Spark實現用戶行為的自動標簽和深度技術 |
基于Spark MLlib的分類分析算法模型與應用操作 | |
關聯分析建模與挖掘算法的實現原理和技術應用 |
24. 預測、推薦分析建模與算法原理及其在Spark MLlib中的實現與應用,包括: k) Spark頻繁模式挖掘算法(parallel FP Growth Algorithm)應用 l) Spark關聯規則挖掘(Apriori)算法及其應用 m) 以上算法在Spark MLib中的實現原理和實際場景中的應用案例。 25. Spark關聯分析程序示例 |
基于Spark MLlib的關聯分析操作 | |
第三天 |
推薦分析挖掘模型與算法技術應用 |
26. 推薦算法原理及其在Spark MLlib中的實現與應用,包括: a) Spark協同過濾算法程序示例 b) Item-based協同過濾與推薦 c) User-based協同過濾與推薦 d) 交叉銷售推薦模型及其實現 |
推薦分析實現步驟與操作(重點) |
回歸分析模型與預測算法 |
27. 利用線性回歸(多元回歸)實現訪問量預測 28. 利用非線性回歸預測成交量和訪問量的關系 29. 基于R+Spark實現回歸分析模型及其應用操作 30. Spark回歸程序實現異常點檢測的程序示例 |
回歸分析預測操作例子 | |
圖關系建模與分析挖掘及其鏈接分析和社交分析操作 |
31. 利用Spark GraphX實現網頁鏈接分析,計算網頁重要性排名 32. 實現信息傳播的社交關系傳遞分析,互聯網用戶的行為關系分析任務的操作訓練 |
圖數據的分析挖掘操作,實現微博數據集的社交網絡建模與關系分析 | |
神經網絡與深度學習算法模型及其應用實踐 |
33. 神經網絡算法Neural Network的實現方法和挖掘模型應用 34. 基于人工神經網絡的深度學習的訓練過程 a) 傳統神經網絡的訓練方法 b) Deep Learning的訓練方法 35. 深度學習的常用模型和方法 a) CNN(Convolutional Neural Network)卷積神經網絡 b) RNN(Recurrent Neural Network)循環神經網絡模型 c) Restricted Boltzmann Machine(RBM)限制波爾茲曼機 36. 基于Spark的深度學習算法模型庫的應用程序示例 |
基于Spark或TensorFlow神經網絡深度學習庫實現文本與圖片數據挖掘 | |
項目實踐 |
37. 日志分析系統與日志挖掘項目實踐 a) Hadoop,Spark,ELK技術構建日志數據倉庫 b) 互聯網微博日志分析系統項目 38. 推薦系統項目實踐 a) 電影數據分析與個性化推薦關聯分析項目 |
項目數據集和詳細的實驗指導手冊由講師提供 | |
培訓總結 |
39. 項目方案的課堂討論,討論實際業務中的分析需求,剖析各個環節的難點、痛點、瓶頸,啟發出解決之道;完成講師布置的項目案例,鞏固學過的大數據分析挖掘處理平臺技術知識以及應用技能 |
討論交流 |
七、師資力量
周老師,男,中國科學院通信與信息系統專業博士。北京郵電大學移動互聯網與信息化實驗室特聘研究員、對外經貿大學信息學院特聘兼職教師、中國移動集團高級培訓講師,長期從事大數據、4G、移動互聯網安全、管理及大數據精確營銷等研究方向。國內頂級信息系統架構師,金牌講師,技術顧問,移動開發專家。擁有豐富的通信信息系統設計、開發經驗及培訓行業經驗,先后為全國超過15家省移動公司,超過30家地市移動公司有過項目開發合作及授課,擔任多個大型通信項目的總師。
鐘老師,男,博士畢業于中國科學院,獲工學博士學位(計算機系統結構方向),曾在國內某高校和某大型通信企業工作過,目前在中國科學院某研究所工作,高級工程師,副研究員,課題組長,團隊成員二十余人。大數據、云計算系列課程建設與教學專家,新技術課程開發組長。近八年來帶領團隊主要從事大數據管理與高性能分析處理(Hadoop、Spark、Storm)、大數據倉庫(HIVE)和實時數據倉庫(SparkSQL、Shark),大數據建模挖掘與機器學習(Mahout、MLib、Oryx、Pentaho BI、SAS、SPSS、R等)、MPP并行數據倉庫(Greenplum etc)、NoSQL與NewSQL分布式數據庫(HBase、MongoDB、Cassandra etc)、(移動)電子商務平臺、大數據搜索平臺(ElasticSearch、Solr、Lucene等)、云計算與虛擬化(OpenStack,VMware,XenServer,CloudStack,KVM,Docker,SaaS服務)、云存儲系統、Swift對象存儲系統、網絡GIS地圖服務器、互聯網+在線教育云平臺方面的項目研發與管理工作。
八、頒發證書
參加相關培訓并通過考試的學員,可以獲得:
1.工業和信息化部頒發的-大數據挖掘高級工程師職業技能證書。該證書可作為專業技術人員職業能力考核的證明,以及專業技術人員崗位聘用、任職、定級和晉升職務的重要依據。
注:請學員帶二寸彩照2張(背面注明姓名)、身份證復印件一張。
九、培訓費用及須知
培訓費7800元/人。(含培訓費、資料費、考試費、證書費、講義費等)。需要住宿學員請提前通知,可統一安排,費用自理。
【報名咨詢】
聯系電話:010-62258232 62278113 13718601312 13120125786
聯 系 人:李先生 陳小姐